Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34493679

RESUMO

HIV-1 selectively packages two copies of its 5'-capped RNA genome (gRNA) during virus assembly, a process mediated by the nucleocapsid (NC) domain of the viral Gag polyprotein and encapsidation signals located within the dimeric 5' leader of the viral RNA. Although residues within the leader that promote packaging have been identified, the determinants of authentic packaging fidelity and efficiency remain unknown. Here, we show that a previously characterized 159-nt region of the leader that possesses all elements required for RNA dimerization, high-affinity NC binding, and packaging in a noncompetitive RNA packaging assay (ΨCES) is unexpectedly poorly packaged when assayed in competition with the intact 5' leader. ΨCES lacks a 5'-tandem hairpin element that sequesters the 5' cap, suggesting that cap sequestration may be important for packaging. Consistent with this hypothesis, mutations within the intact leader that expose the cap without disrupting RNA structure or NC binding abrogated RNA packaging, and genetic addition of a 5' ribozyme to ΨCES to enable cotranscriptional shedding of the 5' cap promoted ΨCES-mediated RNA packaging to wild-type levels. Additional mutations that either block dimerization or eliminate subsets of NC binding sites substantially attenuated competitive packaging. Our studies indicate that packaging is achieved by a bipartite mechanism that requires both sequestration of the 5' cap and exposure of NC binding sites that reside fully within the ΨCES region of the dimeric leader. We speculate that cap sequestration prevents irreversible capture by the cellular RNA processing and translation machinery, a mechanism likely employed by other viruses that package 5'-capped RNA genomes.


Assuntos
Regiões 5' não Traduzidas/genética , Genoma Viral , HIV-1/genética , Capuzes de RNA/metabolismo , RNA Viral/metabolismo , Vírion/fisiologia , Montagem de Vírus , Células HEK293 , Infecções por HIV/virologia , Humanos , Conformação de Ácido Nucleico , Capuzes de RNA/química , Capuzes de RNA/genética , RNA Viral/química , RNA Viral/genética
3.
Viruses ; 12(10)2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-33008123

RESUMO

Nearly all retroviruses selectively package two copies of their unspliced RNA genomes from a cellular milieu that contains a substantial excess of non-viral and spliced viral RNAs. Over the past four decades, combinations of genetic experiments, phylogenetic analyses, nucleotide accessibility mapping, in silico RNA structure predictions, and biophysical experiments were employed to understand how retroviral genomes are selected for packaging. Genetic studies provided early clues regarding the protein and RNA elements required for packaging, and nucleotide accessibility mapping experiments provided insights into the secondary structures of functionally important elements in the genome. Three-dimensional structural determinants of packaging were primarily derived by nuclear magnetic resonance (NMR) spectroscopy. A key advantage of NMR, relative to other methods for determining biomolecular structure (such as X-ray crystallography), is that it is well suited for studies of conformationally dynamic and heterogeneous systems-a hallmark of the retrovirus packaging machinery. Here, we review advances in understanding of the structures, dynamics, and interactions of the proteins and RNA elements involved in retroviral genome selection and packaging that are facilitated by NMR.


Assuntos
Genoma Viral , Espectroscopia de Ressonância Magnética/métodos , RNA Viral/química , Retroviridae/genética , Empacotamento do Genoma Viral , Sequência de Bases , HIV-1/genética , Conformação de Ácido Nucleico , Filogenia , Estrutura Secundária de Proteína , RNA Viral/genética , Montagem de Vírus
4.
Chem Res Toxicol ; 30(9): 1661-1663, 2017 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-28809548

RESUMO

Dimethyl trisulfide (DMTS) is a promising antidotal candidate for cyanide intoxication. DMTS acts as a sulfur donor in the conversion of cyanide to the less-toxic thiocyanate. The alternate reaction pathways of DMTS in the blood are not well understood. We report changes in the hemoglobin absorption spectrum upon reaction with DMTS. These changes closely match those induced by the known methemoglobin former, sodium nitrite. The kinetics of methemoglobin formation with DMTS is slower than with sodium nitrite. These results support the hypothesis that a potentially significant side-reaction of the therapeutically administered DMTS is the oxidization of hemoglobin to methemoglobin.


Assuntos
Hemoglobinas/química , Sulfetos/química , Animais , Hemoglobinas/metabolismo , Metemoglobina/química , Metemoglobina/metabolismo , Camundongos , Oxirredução , Ovinos , Nitrito de Sódio/química , Espectrofotometria Ultravioleta
5.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1044-1045: 149-157, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28110144

RESUMO

The antidotal potency of dimethyl trisulfide (DMTS) against cyanide poisoning was discovered and investigated in our previous studies. Based on our results it has better efficacy than the Cyanokit and the Nithiodote therapies that are presently used against cyanide intoxication in the US. Because of their absence in the literature, the goal of this work was to develop analytical methods for determining DMTS from blood and brain that could be employed in future pharmacokinetic studies. An HPLC-UV method for detection of DMTS from blood, a GC-MS method for detection of DMTS from brain, and associated validation experiments are described here. These analytical methods were developed using in vitro spiking of brain and blood, and are suitable for determining the in vivo DMTS concentrations in blood and brain in future pharmacokinetic and distribution studies. An important phenomenon was observed in the process of developing these methods. Specifically, recoveries from fresh blood spiked with DMTS were found to be significantly lower than recoveries from aged blood spiked in the same manner with DMTS. This decreased DMTS recovery from fresh blood is important, both because of the role it may play in the antidotal action of DMTS in the presence of cyanide, and because it adds the requirement of sample stabilization to the method development process. Mitigation procedures for stabilizing DMTS samples in blood are reported.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Sulfetos/análise , Sulfetos/sangue , Animais , Química Encefálica , Limite de Detecção , Modelos Lineares , Masculino , Camundongos , Reprodutibilidade dos Testes , Microextração em Fase Sólida , Sulfetos/química , Sulfetos/isolamento & purificação
6.
Chem Commun (Camb) ; 50(61): 8374-7, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-24943266

RESUMO

HKUST-1@Fe3O4 chemically bonded core-shell nanoparticles have been prepared by growing HKUST-1 thin layers joined by carboxyl groups onto Fe3O4 nanospheres. These magnetic core-shell MOF nanostructures show exceptional catalytic activity for the oxidation of benzylic C-H bonds and they can be recovered by magnetic separation and reused without losing any activity.

7.
Chem Commun (Camb) ; 50(20): 2624-7, 2014 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-24468790

RESUMO

Three zinc-trimesic acid (Zn-BTC) MOFs, BIT-101, BIT-102 and BIT-103, have been synthesized via a structure-directing strategy. Interestingly, BIT-102 and -103 exhibit extraordinary catalytic performance (up to Conv. 100% and Sele. 95.2%) in the cycloaddition of CO2 under solvent- and halogen-free conditions without any additives or co-catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...